Design and Synthesis of Mercaptoacetamides as Potent, Selective, and Brain Permeable Histone Deacetylase 6 Inhibitors

Wei Lv, Guangming Zhang, Cyril Barinka, James H. Eubanks, and Alan P. Kozikowski*

ACS Med. Chem. Lett. 2017, DOI: 10.1021/acsmedchemlett.7b00012

Wipf Group Current Literature Chaemin Lim 05/06/2017

Histone deacetylases (HDACs)

- A family of zinc-dependent enzymes that specifically remove the acetyl groups from lysine residues on target proteins, including nuclear histones, transcription factors, HSP90, cortactin, and α-tubulin.
- Important role in epigenetic regulation therapeutic targets for the treatment of a wide range of diseases, including cancer, neurodegenerative diseases, arthritis, and others.

Nat. Rev. Drug Discovery 2006, 5, 769-784.

Targeting HDACs

- Unlike other HDAC family members, HDAC6 primarily resides within the cytosol and mainly targets non-histone substrates such as α -tubulin, HSP90, cortactin, etc.
- HDAC6 plays a critical role in cell motility, microtubule stability and function as well as
 aggreome formation → potential role in cancer and neurodegenerative disorders.
- HDAC6 is relatively highly expressed in the central nervous system (CNS), and aberrant expression of HDAC6 has been linked to the pathological development of a host of CNS disorders.

Current HDAC Inhibitors

Nat. Rev. Drug Discovery 2014, 13, 673–691.

- Limitations of the hydroxamic acid group

: Genotoxicity (long-term treatment), off-target effects, including interaction with the hERG cardiac potassium channel

: Low bioavailability, short intravenous half-life, easily hydrolysed into carboxylic acid and metabolized

- Efforts on Zinc Binding Group (ZBG) modification

: Small fatty acids, epoxyketones, benzamides, electrophilic ketones (trifluoromethyl ketones, α -ketoamides, heterocyclic ketones), N-formylhydroxylamine, thiols, mercaptoamides, etc...

Mercaptoacetamide-based HDACIs

Possible mode of interaction of the zinc ion of HDAC with
(a) acetylated lysine moiety of histone
(b) hydroxamate group of HDACI
(c) thiol group from FK228 + DTT
(d) designed mercaptoacetamide-based inhibitors.

B. Chen; A. P. Kozikovski* et al. *Bioorg. Med. Chem. Lett.* 2005, 15, 1389-1392.

- This study reveals that some of the mercaptoacetamide-based HDAC inhibitors are fully neuroprotective, whereas the hydroxamates show toxicity at higher concentrations.

A. P. Kozikowski* et al. J. Med. Chem. 2007, 50, 3054–3061.

Mercaptoacetamide-based HDACIs

M. C. F. Segretti; A. P. Kozikowski* et al. ACS Med. Chem. Lett. 2015, 6, 1156–1161.

In this Study

- Optimization of previous hit MF-2-30

Incorporation of halogen atoms to increase the compounds' lipophilicity

- \rightarrow Increase brain accessibility
- \rightarrow Development of potent, selective HDAC6 inhibitors for treatment of CNS diseases

9

Synthesis: Indole analogs

Synthesis: Quinoline analogs

Synthesis: Dithiol analog

HDAC1 and -6 Inhibitory Activities of the analogs

compd	LogBB ^b	HDAC1 (IC ₅₀ , nM)	HDAC6 (IC ₅₀ nM)	HDAC1/ HDAC6
trichostatin A	N.T. ^c	7.7 ± 1.3	2.3 ± 1.2	3.3
7a	0.49	>30000	63.9 ± 8.0	>470
7b	0.66	28700 ± 1900	1570 ± 42	18
7c	0.50	>30000	241 ± 81	>124
7d	0.30	29300 ± 1100	65.1 ± 6.9	450
7e	0.37	7490 ± 318	11.4 ± 0.9	657
13a	0.17	6880 ± 650	2.79 ± 0.12	2470
13b	0.38	6570 ± 820	14.8 ± 5.2	444
13c	0.16	>30000	33.3 ± 2.5	>901
24	0.20	N.T. ^c	534 ± 3.5	N.T. ^c

^aResults were determined by Reaction Biology Corp. (Malvern, PA, USA); IC₅₀ values displayed are the mean of two experiments. ^bLogBB values were calculated using ACD software. ^cNot tested.

Cellular Activities of 7e and 13a

- Metabolic stabilities of mercaptoacetamides 7b, 7e, 13a, and 13b, and prodrugs 14-16 in pooled human and mouse liver microsomes.^a

	human liver micro	osomes	male mouse liver microsomes	
compd	% remaining at 60 min	$\begin{array}{c}t_{1/2}\\(\min)\end{array}$	% remaining at 60 min	$(\min^{t_{1/2}})$
7b	33.3	48.8	44.3	70.0
7e	25.3	35.2	29.5	41.3
13a	22.3	32.2	61.7	91.2
13b	32.1	42.5	39.6	51.0
14	<1	<1	<1	<1
15	40.5	49.5	18.2	24.8
16	8.5	20.7	18.2	25.9

^aAll tests were performed in duplicate with NADPH.

Metabolism of disulfide prodrugs 15 and 16

Further Evaluation of disulfide prodrugs 15 and 16

- Mice were treated with **15** and **16** at doses of 20 mg/kg, and the relative tubulin acetylation levels in the cerebral cortex were monitored.

Both 15 and 16 increased tubulin acetylation levels in the cortex.
 → 40% increase for 15 vs 30% for 16

Summary

- Developed potent HDAC6 inhibitors with excellent selectivity against HDAC1.
- New analogs have improved properties for brain penetration.
- The disulfide prodrugs for selected compounds showed *in vitro* (in HEK293 cells) and *in vivo* activities (in mouse cortex).
- These mercaptoacetamides are less likely to be burdened with the genotoxicity associated with hydroxamates.
- Possible candidates for further studies in animal models of CNS disorders.
- Selectivity against other isoforms?